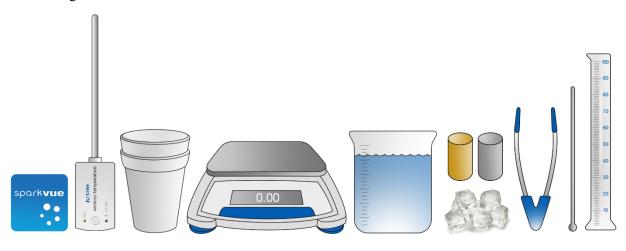
4B - SPECIFIC HEAT


ॐ—INQUIRY-

Combining equal masses of the same substance (water) with different temperatures will produce a mixture with a temperature that is an average of the two samples. Will equal masses of different substances produce the same result?

∞—MATERIALS—

- Device with SPARKvue software
- Temperature sensor
- Graduated cylinder, 100-mL
- Balance (readability: 0.01 g)
- Stirring rod or coffee stirrer

- Tongs
- Metal samples (2)
- Foam cups, 8-oz (2)
- Hot water sample
- Ice

∞—BACKGROUND-

Specific heat is a property of a given substance, abbreviated as: C_p . Specific heat is the amount of energy necessary to increase the temperature of a specific mass of a substance by a specific amount. The specific heat of water is $4.18 \text{ J/g} \cdot {}^{\circ}\text{C}$ because it takes 4.18 joules of energy to raise 1 gram of water by 1 degree C.

∞—SAFETY—

Follow these important safety precautions in addition to your regular classroom procedures:

- Wear safety goggles at all times.
- Use caution with hot water.

∞—PROCEDURE –

Part 1 - Different materials

- 1. What do you predict the temperature will be if you mix equal masses of a cold metal and hot water, for example 100 g of water at 50 °C and 100 g of copper at 0 °C? Record your prediction in the space provided above Table 1 on your answer sheet.
- 2. Open SPARKvue.
- 3. Open the 04B Specific Heat lab file in SPARKvue.
- 4. Use the Bluetooth icon to connect the Temperature sensor.

[∞]—PROCEDURE –

- 5. Obtain a sample of metal. Measure its mass and record the exact mass in Table 1.
- 6. Add the metal to a foam cup and cover it with ice and water so it reaches a temperature of 0 °C. Assume the metal will go to 0 °C and record this as the initial temperature for metal in Table 1.
- 7. Use the graduated cylinder to measure a mass of hot water equal to the mass of metal. The density of water is 1 g/mL.
- 8. Record the mass in Table 1. Pour the hot water into the empty foam cup.
- 9. Insert the temperature probe into the hot water.
- 10. Start collecting data. Record the initial temperature of the hot water in Table 1 just BEFORE mixing.
- 11. Use the tongs to quickly add the cold metal to the hot water. Be careful not to transfer any ice.
- 12. Stir for a few moments.
- 13. Measure and record the mixture temperature in Table 1.
- 14. Stop collecting data

∞—ANALYSIS—

Complete the analysis for Part 1 on your answer sheet.

♦ QUESTIONS

Answer the questions for Part 1 on your answer sheet.

Part 2 - Specific heat capacity

- 1. You will now investigate the ability of a *different* metal to change its temperature under the same conditions as Part 1. Empty both cups and dry the inside and outside of each cup thoroughly.
- 2. Measure and record the mass of a different metal in Table 2 on your answer sheet.
- 3. Add the metal to a foam cup and cover it with ice and water so it reaches a temperature of 0 °C. Record the initial temperature of the metal as 0 °C.
- 4. Measure a mass of hot water equal to the mass of metal. Record the mass in Table 2.
- 5. Add the hot water to the empty cup. Insert the temperature probe into the hot water. Start collecting data and record the initial water temperature in Table 2.
- 6. Use the tongs to quickly add the cold metal to the hot water. Be careful not to transfer any ice.
- 7. Stir for a few moments.
- 8. Measure and record the final mixture temperature in Table 2. Enter the same temperature for the metal and the water.
- 9. Stop collecting data.

4B – SPECIFIC HEAT / STUDENT HANDOUT **⇔—ANALYSIS**— Complete the analysis for Part 2 on your answer sheet. ℃—QUESTIONS—

Answer the questions for Part 2 on your answer sheet.